Platelet-derived growth factor reorganizes the actin cytoskeleton through 3-phosphoinositide-dependent and 3-phosphoinositide-independent mechanisms in human mesangial cells.
نویسندگان
چکیده
BACKGROUND Platelet-derived growth factor (PDGF) is a potent activator of mesangial cell proliferation and migration. Although phosphoinositide 3-kinase (PI3K) enzymes are important downstream targets of the PDGF receptor, the contribution made by their 3-phosphoinositide products in the reorganization of actin cytoskeleton and focal adhesions has been questioned. METHODS AND RESULTS Pharmacological inhibition of the PI3K activity blocks PDGF-induced migration of human primary mesangial cells using an in vitro scrape wound healing assay. Acute (<10 min) inhibition of the PI3K activity did not alter the effect of PDGF on either stress fibre dissolution or reorganization of focal adhesions. However, at later times (>30 min), PDGF-stimulated responses were inhibited. In contrast, PDGF-stimulated membrane ruffling remained insensitive to PI3K inhibitors throughout. Inhibition of protein kinase C and Erk also attenuated PDGF-stimulated mesangial cell migration; however, neither signaling pathway was responsible for the initial effects on filamentous actin and focal adhesions. CONCLUSIONS We propose that following PDGF stimulation of mesangial cells, reorganization of the actin cytoskeleton occurs in a biphasic manner. The mechanism responsible for mesangial cell migration that occurs immediately following PDGF stimulation may serve to 'prime' for the subsequent 3-phosphoinositide-, protein-kinase-C-, and Erk-dependent migration.
منابع مشابه
Phosphoinositide 3-Kinase C2β Regulates RhoA and the Actin Cytoskeleton through an Interaction with Dbl
The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their ...
متن کاملMesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals.
Cell migration during vascular remodelling is regulated by crosstalk between growth factor receptors and integrin receptors, which together coordinate cytoskeletal and motogenic changes. Here, we report extracellular matrix (ECM)-directed crosstalk between platelet-derived growth factor receptor (PDGFR)-β and α5β1-integrin, which controls the migration of mesenchymal stem (stromal) cells (MSCs)...
متن کاملA role for the actin cytoskeleton in the hormonal and growth-factor-mediated activation of protein kinase B.
We show here that cytochalasin D-induced depolymerization of actin filaments markedly reduces the stimulus-dependent activation of protein kinase B (PKB) in four different cell types (HEK-293 cells, L6 myotubes, 3T3-L1 adipocytes and U87MG cells). HEK-293 cells expressing the pleckstrin homology (PH) domains of PKB and general receptor for phosphoinositides-1 (GRP1) fused to green fluorescent p...
متن کاملActivation of Phosphoinositide 3-kinase in Response to High Glucose Leads to Regulation of Reactive Oxygen Species- Related Nuclear Factor- B Activation and Cyclooxygenase-2 Expression in Mesangial Cells
Hyperglycemia causes glomerular mesangial cell proliferation and increases matrix synthesis, contributing to early diabetic glomerulopathy. Immunohistochemical and functional correlations of renal cyclooxygenase-2 in experimental diabetes have been identified. However, the role of cyclooxygenase-2 in early diabetes-induced mesangial cell proliferation remains unknown. The authors tested the hyp...
متن کاملPDGF stimulates an increase in GTP–Rac via activation of phosphoinositide 3-kinase
BACKGROUND Phosphoinositide 3-kinases (PI 3-kinases) are thought to play an important role in coordinating the responses elicited by a variety of growth factors, oncogene products and inflammatory stimuli. These responses include activation of membrane ruffling, chemotaxis, glucose transport, superoxide production, neurite outgrowth and pp70 S6 kinase. Some of these responses are also known to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nephron. Physiology
دوره 107 2 شماره
صفحات -
تاریخ انتشار 2007